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This paper is concerned with a numerical study of spinning thin-wall disks, conic and
spherical shells whose axes perform additional forced slewing. Position and gyroscopic type
inertia forces are taken into account. The technique based on linearization of the shell
dynamic equations in the vicinity of the state of simple rotation and use of the transfer
matrix method is proposed. It has been found through the numerical calculations that the
compound rotation of the elastic thin-wall systems may be a reason for their precession
vibrations which may reveal a resonant character under certain conditions. The results of
experiments with spherical shells are discussed.

The elaborated approach may be used for numerical simulation of dynamics of thin-wall
elastic rotors of engines of aircraft during manoeuvres.

( 2001 Academic Press
1. INTRODUCTION

There is a distinguishing feature in the technology of aircraft engine turbine production. It is
common knowledge that an overwhelming majority of engine failures and emergencies
occur within the regimes of an aeroplane's take-o!, landings and manoeuvres when its
rotors are in a state of compound rotation. Aircraft specialists, having long-standing
experience of their operation, know about the possible strange behaviour of engines in
compound motion and for this reason they set up the engine resource (reliable longevity) by
the number of its take-o! and landings. But when investigating the engine thin-wall rotor
strength it is usual for designers to concentrate their primary attention on the factors
associated with the greatest contribution to the overall stress}strain state of its elements.
Among these are the aerodynamic forces, high temperature and inertia forces of simple
rotation whose angular velocity may amount up to 20 000}30000 r.p.m. In doing so, they
practically do not take into account the gyroscopic inertia force dynamic action originated
from the interplay of the #exible thin-wall rotor spinning motion and the aeroplane slewing
motion, considering it to be very small and calculating only resultant gyroscopic moment
on the assumption that the rotor is absolutely rigid.

But the opinion about insigni"cance of the additional internal forces generated by the
elastic precession vibration of a #exible thin-wall rotor in compound rotation, though true
in the general case, may be fraught with concealed hazards. Firstly, the compound rotation
0022-460X/01/380491#14 $35.00/0 ( 2001 Academic Press



492 V. I. GULYAYEV E¹ A¸.
is the sole and primary source of generation of genuinely periodical loads, which are acting
permanently because the aeroplane axis is in incessant reorientation motion. Even if the
vibrations set up by the loads have low intensity, they provoke fatigue damage and conduce
to their accumulation. Secondly, the gyroscopic interplay between di!erent motions of
elastic thin-wall rotor leads to the generation of the so-called precession vibrations.
Contrary to usual vibration which is accompanied by standing wave excitation, when the
most dangerous extreme stresses occur only in some isolated spots, the precession
vibrations are associated with excitation of progressive waves which travel in the
circumferential direction of the structure domain. In this situation, the most hazardous
stresses may cover wider areas.

Finally, due to the described interaction of the elastic rotor and aeroplane motions the
excitation of their resonant vibration is possible. It seems likely that the facts can help one
to clarify the statistical data to the e!ect that over 90 per cent of all aeroplane engines faults
and failures prevail in take-o!, landings and manoeuvres.

The reason for the resulting situation connected with ignoring the precession vibrations
consists of some speci"c di$culties of the problem of numerical simulation of the mentioned
phenomena. The theoretical di$culties are correlated to the necessity to set up and
investigate very complicated problems characterized by particular mechanical and
mathematical features. They are the complicated nature of the inertia actions including
position and gyroscopic forces experienced by the rotor elements. The position (centrifugal)
forces depend on the element position and vary with the element elastic displacement in the
system vibrations. The gyroscopic (Coriolis) forces are induced by interaction of rotational
and rectilinear motions and depend on the velocity of the element elastic displacements.
Besides, there are precession gyroscopic inertia forces generated by interaction of the rotor
spinning and compulsory slewing motions in its compound rotation.

The existence of gyroscopic terms in the left-hand side of the di!erential equations causes
a skew-symmetrical matrix of coe$cients of the unknown velocities. For this reason, when
investigating the rotor free vibrations and analyzing its frequency and mode spectra,
double-sized matrices must be used. This is attended by splitting the eigenvalue spectrum
and doubling the number of free vibration frequency values and modes. The existence of
gyroscopic type terms in the right-hand side of the di!erential equations is associated with
the generation of precession vibrations and a necessity to construct complicated modes of
elastic motion. The existence of terms connected with position forces causes one to follow
the rotor geometry transformation and to use step-by-step techniques.

Owing to the severe di$culties of the problem under review, it is essentially
uninvestigated. Shell vibrations in simple rotation were studied in references [1}4]. Some
particular questions of compound rotation of thin-wall structures were investigated in
reference [5]. A similar dynamic problem for bladed disks was solved in reference [6].

Considered below are problems of compound rotation of thin-wall elastic disks and
conical and spherical shells. It has been found that compound rotation of elastic thin-wall
systems is a reason for their precession vibrations which may reveal a resonant character
under certain conditions. In these cases not only vibration amplitudes but also the total
elastic moment acting on the system supports begin to increase very quickly. The results of
experiments are discussed too.

2. INERTIA FORCES CALCULATION

To determine the inertia forces acting on an elastic system in compound rotation consider
a model of a shell rotor (Figure 1). The shell butt-end is connected to a rigid foundation



Figure 1. The shell design scheme: **, initial undeformed state; , state of precession vibration.
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spinning with a constant angular velocity x relative to the shell axis which in its turn is
slewing with constant velocity vector x

0
around the axis perpendicular to x. To describe

the inertia forces incited by the rotor compound rotation, introduce the following right
reference frames: OX*>*Z* is the inertial co-ordinate system with the origin O "xed at the
support contour centre and axis O>* being collinear with the vector x

0
; Oxyz*the

co-ordinate system "xed to the rotating foundation; OX>Z*the slewing co-ordinate
system whose axis O> coincides with the axis O>* and axis OZ is in line with the Oz-axis.
In the rotor shell middle surface the local curvilinear orthogonal co-ordinate system
ox1x2x3 is built whose co-ordinate line x1 is disposed in the generatrix section, x2 is
directed in the circumferential sense, x3 is oriented along the internal normal to the shell
surface.

The following co-ordinate bases are constructed: the basis i*, j*, k* in the inertial
reference frame OX*>*Z; i

1
, j

1
, k

1
in the OX>Z reference frame and i, j, k in the system

Oxyz. The vectors e
1
, e

2
, e

3
of the primary basis are directed along the tangents to the shell

co-ordinate lines. Vectors of the mutual basis conjugate to the primary one are determined
by the correlations

ei"aije
j

(i"1, 2), e3"e
3
.

Inasmuch as in the case considered only inertia forces are separated for the rotor elastic
vibration investigation, their intensity is calculated as follows:

p"!cha. (1)
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Here h is the thickness of a shell element; c its material density; a the element absolute
acceleration vector calculated with the help of the formula [7]

a"a
e
#a

r
#a

c
, (2)

where a
e
is the element bulk acceleration vector; a

r
the element relative acceleration; a

c
its

complementary acceleration.
The absolute acceleration (2) components are calculated with the help of the formulas

a
e
"e].#X](X].), a

c
"2X]

d.
dt

, a
r
"

d2.
dt2

. (3)

Here X"x#x
0

is the reference frame 0xyz absolute angular velocity vector, e"x
0
]x

its absolute angular acceleration vector, ."R#u the deformed shell element position
vector in the reference frame Oxyz, R the same vector for the nondeformed shell, and u the
vector of the element elastic displacement. The kinetical parameters of the platform
translatory motion are neglected.

It is convenient to construct the vectors a
e

and a
c
in the basis i, j, k of the co-ordinate

system 0xyz. As a consequence of vector operation ful"lment in equation (3), considering
uAu

0
, ignoring u2

0
and after omission of the intermediate transformations, the acceleration

vectors in this basis may be represented as follows:

a
e
"i[!u2(r cosx2#u

1
sin u cosx2/Ja

11
!u

2
sinx2/Ja

22
!u

3
cosu cos x2)]

#j[!u2(r sinx2#u
1
sin u sin x2/Ja

11
#u

2
cosx2/Ja

22
!u

3
cosu sinx2)]

#k2ru
0
u sin (ut#x2),

a
c
"i [2u(!uR

1
sinu sin x2/Ja

11
!uR

2
cosx2/Ja

22
#uR

3
cosu sinx2 )]

#j[2u(uR
1
sinu cosx2/Ja

11
!uR

2
sinx2/Ja

22
!uR

3
cosux2)]#k ) 0,

a
r
"L2u/Lt2 ,

where u
1
, u

2
, u

3
are the contravariant components of the vector u, uR

1
, uR

2
, u5

3
the appropriate

velocity components, a
11

, a
22

the parameters of the "rst quadratic form in the shell surface,
r the distance between the considered element and the axis of spinning, u"u

0
#0*

1
, u

0
the

angle of inclination of the shell generatrix tangent to its axis for the nondeformed shell, and
0*
1

the corresponding angle of the element elastic slewing.
The basal vectors of the movable co-ordinate system 0xyz and primary local system are

connected with the correlations

i"cosx2 sinu/Ja
11

) e
1
!sinx2/Ja

22
) e

2
!cos x2 cos u ) e

3
,

j"sinx2 sinu/Ja
11

) e
1
!cosx2/Ja

22
) e

2
!sin x2 cosu ) e

3
,

k"cosu/Ja
11

) e
1
#sin u ) e

3
.

Taking into account these relationships, the contravariant components of the
acceleration vectors may be represented in the local basis as follows:

a1
e
"!u2r sinu/Ja

11
#2u

0
ur sin (ut#x2) cosu/Ja

11
!u2u

1
sin2u/a

11

#u2u
3
sinu cosu/Ja

11
,
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a2
e
"!u2u

2
/a

22
,

a3
e
"u2r cosu#2u

0
ur sin (ut#x2) sin u#u2(u

1
sinu/Ja

11
!u

3
cosu) cosu,

a1
c
"!2uu5

2
sinu/Ja

11
a
22

,

a2
c
"!2uuR

1
sinu/Ja

11
a
22
!2uuR

3
cosu/Ja

22
,

a3
c
"2uu5

2
cosu/Ja

22
,

a1
r
"uK

1
/a

11
, a2

r
"uK

2
/a

22
, a3

r
"uK

3
. (4)

The corresponding force expressions based on equations (1) and (4) are inserted into the
left- and right-hand side of constitutive equations of the theory of shells. They contain
summands depending on displacements, their velocities and accelerations and the phase
function (ut#x2) as well. For this reason, it is not only the generation of running loads
that is connected with the action of the inertia forces initiated by the compound rotation,
but also the structural modi"cation of the constitutive equations left-hand side, including
gyroscopic terms. It is known [7] that the gyroscopic forces power equals zero, but they
essentially in#uence on the system motion modes.

3. CONSTITUTIVE EQUATIONS

For the considered problem to be solved the following simplifying assumptions are used.
In the rotor dynamics only elastic strains take place and the correlations between stresses
and strains are reckoned to be linear. The angular velocity u is comparatively high so the
correlations between strains and displacements at simple spinning are non-linear. Damping
forces are not taken into consideration and the elastic gyroscopic system is assumed to be
conservative.

With the assumptions being made, the equations of dynamic equilibrium of a rotor
shell element in the above-introduced reference frame Oxyz may be represented in
the form

$aTa#p"0, $aMa#(ea]Ta)"0 (a"1, 2), (5)

where Ta is the vector of internal forces in the shell, Ma the vector of internal moments,
$a the symbol of the covariant derivative, and p the vector of the external distributed forces
intensity.

Reduced to the scalar form, the "rst equation yields

L¹11

Lx1
#

L¹12

Lx2
#(2C1

11
#C2

21
)¹11#C1

22
¹22!b1

1
¹13#p1"0,

L¹12

Lx1
#

L¹22

Lx2
#(3C2

12
#C1

11
)¹12!b2

2
¹23#p2"0, (6)

L¹13

Lx1
#

L¹23

Lx2
#(C2

12
#C1

11
)¹13#b

11
¹11#b

22
¹22#p3"0.
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Here C i
ik

is the Cristo!el symbol, and bj
i
, b

ij
the parameters of the second quadratic form.

The shear forces ¹13, ¹23 are determined with the help of the system (5) second equation as

¹13"
LM11

Lx1
#

LM12

Lx2
#(2C1

11
#C2

21
)M11#C1

22
M22,

¹23"
LM12

Lx1
#

LM22

Lx2
#(3C2

12
#C1

11
)M12. (7)

The contravariant components of the internal forces ¹ij and moments Mij may be
expressed through the covariant components of the strains e

ij
and curvature increments k

ij
:

¹ij"
Eh

1!l2
eab [laijaab#(1!l)aia ajb],

Mij"
Eh3

12(1!l2)
kab [laijaab#(1!l)aia ajb] (i, j, a, b"1, 2). (8)

Here E, l are the shell material modulus of elasticity and Poisson's ratio.
The functions e

ij
, k

ij
are expressed through the components u

1
, u

2
, u

3
of the displacement

vector u and angles 0
i
of the cross-section turn:

e
ij
"

1

2 A
Lu

Lxj
) e

i
#

Lu

Lx
i

) e
j
#0

i
0
jB,

k
ij
"

1

2A
1

c
ik

LX
1

Lxj
) ek#

1

c
jk

LX
1

Lxi
) ekB (i, j, k"1, 2), (9)

X
1
"cij0

i
e
j
, 0

i
"!A

Lu

LxiB e
3
.

The scalar form of the equalities is as follows:

e
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u
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u
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2
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1
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2
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1
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u
2
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1
0
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0
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Allowance for the variations of parameters bi
i
, b

ii
is carried out by the use of the equalities

Dbi
i
"!aiiDk

ii
, Db

ii
"!Dk

ii
. (11)

After corresponding substitutions of inertial forces (4) and expressions (7) into (6) the "rst
group of dynamic equilibrium equations (5) takes the form
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0
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u
1

Ja
11

cosu sinu

!u2u
3
cos2u#2u

uR
2

Ja
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cosu#uK
3D .

These equations and correlations (8)}(11) are the constitutive system of geometrically
non-linear di!erential equations of the dynamic behaviour of a thin shell in compound
rotation.

In modelling the rotor motion it is assumed that uAu
0
. This allows one to select two

states in the shell overall motion. In the "rst state the shell performs simple rotation with the
angular velocity u; it is stressed by stationary axisymmetrical centrifugal inertia forces and
does not vibrate. In the second one, occurring in the slewing elastic system, additional
gyroscopic periodical inertia forces are generated, which excite small precession vibrations
with the frequency u, processing relative to the initial statically stressed state. The condition
uAu

0
allows one to study the states in turn, using the solution of the "rst state equations

for calculation of coe$cients of equations of the rotor vibration in the second state.
To investigate the simple spinning of the rotor, system (12) is used after discarding the terms

containing u
0

and time derivatives and taking into consideration the rotor axial symmetry.
The equations of the rotor precession vibrations are constructed via the correlations (12),

linearized in the vicinity of the simple rotation state [8]. After additional transformations
they acquire the form

LD¹11

Lx1
#

LD¹12

Lx2
#(2C1

11
#C2

21
)D¹11#C1

22
D¹22!b1

1
D¹13
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2
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cosu#DuK
3D . (13)

The equations are complemented by equalities (8)} (11) appropriately linearized. They are
closed by corresponding boundary conditions.

4. THE PROBLEM SOLUTION TECHNIQUE

The principal peculiarity of system (13) lies in the existence of the multipliers sin (ut#x2)
in their right members, which are associated with inertia loads being harmonic with
respect to x2 and t and running in the circumferential direction with the angular
velocity u and exciting precession vibrations with the frequency u. This circumstance
permits one to represent the even and odd functions of the circumferential co-ordinate x2 in
the form

D¹11(x1, x2, t)"¹ (11)(x1) sin (ut#x2 ), D¹(22) (x1, x2, t)"¹ (22) (x1) sin (ut#x2),

D¹12(x1, x2, t)"¹ (12)(x1) cos (ut#x2 ), D¹13 (x1, x2, t)"¹ (13) (x1) sin (ut#x2),

D¹23(x1, x2, t)"¹ (23)(x1) cos (ut#x2 ), DM(11) (x1, x2, t)"M (11) (x1) sin (ut#x2),

DM22(x1, x2, t)"M (22)(x1) sin (ut#x2 ), DM12 (x1, x2, t)"M (12)(x1) cos (ut#x2),

F

Du
1
(x1, x2, t)"u

(1)
(x1) sin (ut#x2 ), Du

2
(x1, x2, t)"u

(2)
(x1) cos (ut#x2),

Du
3
(x1, x2, t)"u

(3)
(x1) sin (ut#x2 ). (14)
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When expressions (14) are substituted into equation (13) and the multipliers sin (ut#x2),
cos(ut#x2) are cancelled, the system of eight ordinary di!erential equations results with
x1 being an independent variable. It can be represented in the form

dy/dx"F(x)y#f (x)u
0
, (15)

where y"Mu
(1)

, u
(2)

, u
(3)

, e
(11)

, e
(12)

, 0
(1)

, k
(11)

, ¹(13)NT is the vector of unknown variables;
F(x), f (x) the certain matrix function and vector function, respectively; x,x1.

System (15) is complemented with appropriate boundary conditions. Its solution is
attained with the help of the transfer matrix method. The matrix element functions
representing particular solutions of system (15) are constructed by the Runge}Kutta fourth
order method. Inasmuch as some summands of the matrix F(x) elements have large
multipliers u2, system (15) is rigid and there are fast-growing functions among its particular
solutions. For this reason, the method of orthogonalization is used additionally in its
numerical integration.

5. RESULTS AND THEIR DISCUSSION

The software created on the basis of the elaborated technique was used for the
investigation of dynamics of elastic thin-wall rotor models in compound rotation. First, we
consider the simplest ones involving single disks and conic shells. It is established that
compound rotation of an elastic disk with free outer edge and clamped by its internal
boundary edge to a spinning shaft is not accompanied by resonant regimes of its precession
vibrations. Inasmuch as the "eld of periodically changing displacements u

(3)
(x1, x2, t)

depends on the phase co-ordinate (ut#x2) in accord with the harmonic law (14), the
vibration mode has the shape of a harmonic wave running in the circumferential direction
x2 with the angular velocity u, in opposition to the disk spinning. So in the inertial
reference frame the vibrations show up as a stagnant harmonic wave, symmetric relative to
the plane containing the axes of rotation and slew with maximum displacements located
in this plane. In the plane of the spinning axis slewing the normal displacements
equal zero.

Figure 2 presents the amplitude of the outer edge de#ection u
(3)

(x1"D/2) as a function of
the spinning rate u of a steel disk in the case of its parameters values as follows: the disk
internal and external diameters d"0)24m, D"0)8m; its thickness h"0)003m; the disk
axis slewing angular velocity u

0
"1 s~1.

Referring to the "gure, one can see that the vibration amplitude grows up to the
maximum value and then begins to approach the abscissa axis 0u

0
. It can be explained by

the fact that the inertia gyro force intensity 2uu
0
r increases proportionally to the "rst

power of u, whereas the disk bending sti!ness caused by its tension with the radial inertial
forces depends on the second power of the velocity.

The phenomenon is typical for all other similar disks. It con"rms to the Den}Hartog
conclusion [5] that even vibrations of a segment of a #exible chain of links in compound
rotation do not achieve resonant regimes, not to mention elastic beams and disks which
possess relatively higher sti!ness.

The situation changes if the internal boundary of an annular disk is free and its external
edge is clamped. In this case, the disk spinning gives rise to initiation of compressive internal
forces and decrease of its bending sti!ness and free vibration frequencies. As a result,
a sequence of resonances separated by approximately equal segments Du

j
"u

j`1
!u

j
in

u may occur (Figure 3).



Figure 2. Amplitude of the disk edge precession vibrations versus angular velocity u.

Figure 3. Amplitude of the disk inner edge precession vibrations versus angular velocity u.
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It is known that a gyroscopic moment Mg is an integral measure of a mechanical system
dynamical behaviour in compound rotation. Thus, display of this moment for a rotating
axisymmetrical solid body whose axis performs additional compulsory slewing consists in
the generation of the body supports reactions making a force couple with the moment

Mg "I
z
x]x

0
. (16)

Here I
z
is the body moment of inertia relative to the rotation axis.

At the same time the elastic vibrations of a real thin-wall rotor excited by compound
rotation are accompanied by the generation of a system of distributed edge elastic bending



Figure 4. Values of the elastic (M
e
) and gyroscopic (Mg) moments in the disk.

TABLE 1

<alues of the ,rst resonant angular velocities for the annular disk

d/D

D (m) 0)3 0)4 0)45 0)5 0)55 0)6 0)7

1 332 s~1 286 s~1 271 s~1 266 s~1 273 s~1 292 s~1 384 s~1
0)8 519 s~1 447 s~1 424 s~1 416 s~1 426 s~1 456 s~1 600 s~1
0)4 2078 s~1 1790 s~1 1696 s~1 1665 s~1 1704 s~1 1822 s~1 2399s~1
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moments, torques, longitudinal and shear forces applied to the solid spinning carrier and
producing a total resultant elastic moment M

e
.

In Figure 4 the moduli of the moments M
e
"n (D2¹*

(13)
/4#DM*

(1)
/2) and Mg "I

z
uu

0
are shown, where ¹*

(13)
, M*

(1)
are the amplitude values of physical components of the

internal shear force and bending moment at x1"D/2. It should be noted that outside
the resonant zones which are very narrow, the moments Mg and M

e
practically

coincide. The calculations were performed for the given values d"0)24m, D"0)8m,
h"0)003m.

As the calculations testify, the "rst resonant values of the considered disk rotation
velocity u

r
depend on the dimension of its circular hole. A series of tasks for di!erent

parameters d/D and D was solved. In Table 1 the "rst resonant values of the velocity u are
listed. It can be seen that the minimal values are achieved at the ratio d/D"0)5.

The cases discussed above are comparatively straightforward because the state of
a simple spinning disk is characterized by a distribution of the centrifugal inertia forces in its
plane. For this reason its stress}strain state is planar, where the disk is either stretched or
compressed depending on clamping internal or external edge. Additionally, slewing the
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rotation axis leads to the generation of precessing inertia forces, normal to its surface, which
excite the transverse precession vibrations accompanied by its out-of-plane bending.
However, as this takes place, the Coriolis acceleration a

c
"0, since the relative velocity

vector u5
3

is parallel to the rotation axis.
In the general case, when a shell executes compound rotation, all the above-mentioned

e!ects take place and the shell motion is more complicated. As an example consider the
compound rotation of a steel conic shell with its small edge clamped and large edge free. The
shell parameters are selected as follows: the small edge diameter d"0)24m, the generatrix
length ¸"0)28m, the thickness h"0)003m, and the cone angle 2a was changed inside the
limits 0)2a)1783.

The calculations testify that if the angle a is comparatively small the shell does not endure
resonant vibrations inside the considered range of u and the resonant vibration of the
selected shell occurs for the angle values 150)2a)1763. In Figure 5 the elastic (M

e
) and

gyroscopic (Mg) moments are shown as functions of u for the case 2a"1723. The moments
practically coincide outside the resonant zones.

To establish the area of plausibility of the obtained results, the computer and
experimental simulation of precession vibrations of a spherical segment clamped in its apex
was performed. As the preliminary calculations testify, in the cases of not very thin spherical
segments (R/h(100) the regimes of the precession resonances are achieved at relatively
high values of the rotation rate u. Inasmuch as experimental investigations of the motion of
fast-rotating structures are connected with the essential complication of their performance
technique conditioned by stringent demands on the whole system dynamic balancing,
considerable increase of the aerodynamical forces and requirements of trouble-free
ful"lment, very thin spherical segments (R/h+1295) were selected for the experimental
investigations. The shell parameters included the following: the curvature radius
R"123mm, the segment base diameter D"203 mm, the thickness h"0)095 mm. The
shell material density c"7)8]103kg/m3, its elasticity modulus E"2)1]1011 Pa,
the Poisson coe$cient l"0)3. The diameter of the hole, by which the shell was "xed to the
electric motor shaft, measured 9, 12 and 14 mm. The motor shaft rotated with the rate u, the
platform on which the motor was installed slewed with the rate u

0
around the vertical axis.
Figure 5. Values of the elastic (M
e
) and gyroscopic (Mg) moments in the conic shell.
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Owing to the condition uAu
0
, the precession vibrations quickly assumed stationary mode

in the reference frame "xed to the slewing platform.
The shell de#ections had the maximal values at the free edge in the planar cross-section

containing both the vectors x, x
0
.

It was found by the calculations and experiments that the fast rotation of the spherical
segment pre-stressed it by the centrifugal inertia forces and made it sti!er. However, the
additional slewing of its rotation axis led to the essential increment of the internal moments
in the vicinity of the clamped edge which increased very fast as the resonant angular velocity
u

r
was approached. So it was not possible for the selected thin shells to reach the resonant

vibrations because as u
r
was approached the compressed zone of the thin shell buckled near

its clamped edge and the formed dent was displaced in the direction opposite to the shell
rotation. In the reference frame "xed in the platform, the dent showed up to be immovable.
As a consequence of this buckling, the shell surface endured substantial transformation and
the shell was quickly destroyed.

In Table 2 are listed the values of calculated resonant rates u
r

and critical rates
u

cr
established experimentally for the selected values of the clamped edge diameter d and

slewing velocity u
0
. It can be seen that the higher the diameter d and the more rigid the shell

is, the earlier the shell buckles and the greater is the di!erence between u
cr

and u
r
. Figure 6
Figure 6. Displacements of the spherical shell edge versus the angular velocity u.

TABLE 2

<alues of the ,rst resonant and critical angular velocities for the spherical shell

d u
r

u
0

u
cr

(mm) (rad/s) (rad/s) (rad/s)

1 9 461 0)289 448
2 12 698 0)414 591
3 12 698 0)440 582
4 14 892 0)596 702
5 14 892 0)691 691
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shows the u-dependence of the de#ection amplitudes of the shell edge for case 5 in Table 2.
The solid line represents the calculation results, the circles display the experimental data.
Yet it should be underlined that the buckling phenomenon and destruction are typical for
very thin shells and thicker shells may behave in another way. In addition, in the
comparison the aerodynamical forces playing an important role at high values of u were
not taken into account.

6. CONCLUSIONS

The obtained results of numerical and experimental investigations enable one to draw the
following inferences.

1. The compound rotation of thin elastic disks and shells is accompanied by generation of
their precession vibrations in the mode of a running harmonic wave, which in the inertial
reference frame shows up as a stationary deformed surface symmetric relative to the
plane containing both the vectors of the angular velocities of the rotation and slewing.

2. It is established theoretically that the resonant vibrational regimes may occur in
compound rotation of annular disks clamped by their outer edge and conical and
spherical shells. Compound rotation of thin disks clamped by their inner boundary is not
accompanied by the resonant vibrations.

3. It is established experimentally that the extremely thin spherical shells (R/h+1300)
buckle and are quickly destroyed near the clamped inner edge in the vicinity of the
resonant values u

r
predicted theoretically.
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